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Directed waves in random media: An analytical calculation
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The propagation of directed scalar waves in D +1 dimensions in a strongly disordered medium is
studied. We use the model first proposed by Saul, Kardar, and Read [Phys Rev. A 45, 8859 (1992)],
where unitarity is guaranteed in each step. The beam positions (x?) and (x ) characterize the trans-
verse fluctuations of a directed wave front, where the overbar means an average over the wave profile for
a given realization of randomness, and { ) means a quenched average over all realizations. We intro-
duce G"(y) as the Laplace-transformed Green function of two free random walkers with center-of-mass
momentum k and relative position y. We calculate analytically the mean-square devnatlon of the beam
center, (X?), as a function of time. The results show that, for large ¢, (x ) behaves as
(1/Vm)t'2=1+0(:7*/?) in 1+1 dimensions and as (Inf +41In2+y)/47+0(1/t) in 2+ 1 dimensions
and takes the finite value 1/2D[GXZ0(0)—V(27/4m)t~'/%8,3]1+0(1/1) in D +1 dimensions where
D =3, y being the Euler constant. We generalize these results to a twofold random walk with any
probability-flux-conserving interaction. In all cases the leading term at large ¢ depends solely on the
finite value or leading singularity of G,;‘:O(O) atg=1.

PACS number(s): 42.25.Bs, 05.40.+j, 02.50.—r

I. INTRODUCTION coherent propagation along the z direction. For such a
case, we can set ¢(x,z )=<I>(x,z)e' "% We require
dn?<<n? and 9,8n><<knydn? so that each scattering
event causes only a small transverse momentum change,
and that the term 32® /dz? (effect of back scattering) can
be neglected. Now a Schrodinger equation is obtained by
the changing of variables z<«:

Consider a scalar wave ¢(x,z) propagating in a random
medium; the static solution of ¢(x,z) satisfies the follow-

ing Helmholtz equation:
[V2+k*n?(x,z)]$(x,2)=0 (1.1

where n(x,z) is a nonuniform index of refraction that de-

scribes the disorder of the host medium. Following Feng,
Golubovic, and Zhang (FGZ) [1], we decompose
nYx,z)=n3+6n%x,z), where n, is the disordered-
averaged index of refraction, and 6n %(x,z) contains local
fluctuations due to randomly distributed scattering

i93=[—yv§+V(x,t)]q>

ot
where p=(2kn,) ! and V=—k&én?/2n, [2]. Since both
p and V are real, the norm of the wave function is
preserved. For a wave initially (at t=0) localized at

(1.2)

centers. Assume the fluctuation varies slowly in the  x=0, the solution is given by the Feynman path-integral
transverse directions (subspace x), then it will favor a  formula
|
o(x,0= [ *"Dlx(r)] exp[ [ar 2i 9% | _y(x(r),7) ] , (1.3)

where x(7) describes a path in D dimensions. We use an
overbar to indicate an average with weight |®(x,?)|? for
a given realization, and { ) to indicate the quenched
average over all realizations of randomness. Approxi-
mately, (x*) descnbes the wandering of the beam center,
while {x2—x?) gives a measure of the beam width.
Equation (1.3) is to be discretized on a (D +1)-
dimensional lattice A. To describe the lattice, consider a
random walk in discrete time on a D-dimensional simple
hypercubic spatial lattice. In each time step the walker
moves one unit in space. Now visualize the (D +1)-
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[
dimensional lattice A containing all world lines of such
walks. [For D=1, A is a square lattice rotated 45°; for
D =2, A is a body-centered-cubic. These two cases are
described by Saul, Kavdar, and Read (SKR).]

The wave function takes its values on links of the lat-
tice A. We use ®(x,1) to refer to the amplitude arriving
at the site (x,?) from the j direction, where j represents a
unit vector among the 2D possible unit vectors in D di-
mensions (i.e., jE{+€,Le,,...1t€p}). At t=0, the
wave function is localized at the origin, with
@,(0,0)=1/V2D for all j. We then have to assign a

5755 ©1994 The American Physical Society



5756 RICHARD FRIEDBERG AND YI-KUO YU 49

complex-valued amplitude to each trajectory of arbitrary
length ¢ emanating from the origin; the wave function
will be the sum of the amplitude of all trajectories arriv-
ing at a given link. Therefore we assign a 2D X2D uni-
tary matrix S(x,?) to each site on the lattice. The values
of the wave function at time ¢ + 1 are then given from the
following equation:

q)](x—l)
D,(x—2)
®(x—j)
: t+1
Sii(x) Siapx) | | 2i®)
Sz’l(x) SZ,ZD(X) (DZ(X)
=] 7. - : (1.4)
SzD’l(x) SZD,ZD(X) ' (DJ(X)
t

To simulate the effect of a random potential, following
SKR the S matrices are picked randomly from the funda-
mental representation of the U(2D) group. One is in-
terested in the second moment of the average flux,

(x3)=3 (P(x,1))x*, (1.5
and in that of the distribution of the beam center,
()= (P(x,,t)P(x0,1)) %%, . (1.6)

X, Xy

Here, P(x,?) is the probability distribution function on
the lattice at time #, defined by

P(x,t)=3 |®i(x,0)]* .

]

(1.7

Note that 3 _P(x,t)=1 is guaranteed from the initial
condition and unitarity. This is why Egs. (1.6) and (1.5)
are not divided by 3,P(x,?). The average ( ) in Eqgs.
(1.6) and (1.5) should be performed over a distribution of
the S matrices that closely resembles the corresponding
distribution for V in the continuum problem. However,
we consider only the strong-scattering limit, where each
matrix S(x,?) is an independently chosen, random ele-
ment of the group U(2D). According to SKR, the results
are expected to be valid for the continuous Eq. (1.1) over
a range of length scales d <<z <<§, where d is a length
over which the phase change caused by randomness is
around 2, and £ is the length scale for the decay of in-
tensity and breakdown of unitarity. In such a strong-
scattering limit, the effect of S(x,?) is therefore to redis-
tribute the incident probability flux P(x,?) at random in
each possible direction. On the average, the flux is scat-
tered symmetrically so that the average of P(x,?z) de-
scribes the probability distribution, in space, of a classical
random walk; therefore {(x>) «¢. SKR drew attention to
the quantity (X’), which is difficult to calculate because
the correlation function {( P(x;,2)P(x,,¢)) does not have

a simple form. We will show explicitly in Sec. II how to
calculate this quantity.

II. FORMULATION AND CALCULATION

As pointed out by SKR, the quantity we are interested
in depends only on P(x,?); we therefore study its evolu-
tion. Consider the scattering event shown in Fig. 1. The
probability flux is locally conserved. Define

[ _(x+i,t+1)?

(x,0)= : @.1)
S S e P
j

where |® _;|? represents the outgoing probability flux into
the i direction, and |®;|* represents the incoming proba-
bility flux from the j direction. In view of (1.7) and uni-
tarity, we have the following recursion relation:

P(x,t)= Y gj(x—j,t —1)P(x—j,t—1) . (2.2)
j
To evaluate (1.6), we must study the evolution of the
disorder-averaged correlation
WYXy, Xy, 8 ) = (P(x,,1)P(xy,2)) . (2.3)

From (2.2) we obtain the recursion
Yxpxpt)= 3 (g5 (x;—jp,t = 1)g; (X —jp,t = 1))
ipdy
XX, —jp X~ jpt —1) . (2.4)

We must now study the quantities (g;(x,7)g;(y,?)).
Strictly, the strong-scattering limit means that the matrix
S(x,?) is distributed uniformly with respect to the group
measure of U(2D). One then obviously has

Dp(X-D t+1)

D_ (X+1t+1) /
@® v

TN

PD-p(Xt)

D_(X+2,t+1)

(X0 &3]
D,(X.t)

FIG. 1. Typical scattering event. The big dot represents the
lattice point (x,#). In the upper part of the figure, i runs from
—1 to —D and then from 1 to D, while |®_;|? represents the
outgoing probability flux into the i direction. In the lower part
of this figure, j runs from 1 to D and then from —1 to —D,
while |®;|? represents the incoming probability flux from the j
direction.
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2
1 |1
(gi(X,t))—E', (gi(x,t)gj(y,t))#y— EB , (2.5)
and, after some calculation,
(g3(x,1)) =2(g;(x,1)g(X,1));x;
— 1 — u.a.
DD+ & - 2.6)

[We use the superscript u.a. to denote the uniform aver-
age over the group U(2D).]

However, we shall consider a more general stochastic
problem [3] in which it is still true that the outgoing
direction of the random trajectory is uninfluenced by its
incoming direction, but the probability flux need not be
derived from a complex amplitude as in (1.7). Thus we
still assume (2.2)—(2.5) but replace (2.6) by

(gl(x,t))=a,

2.7
__ 1 1
<8i(x,t)g,~(x,t))#j—ED—_—l 2—D-—al ,
J
A(X];X2y]1,]2)—(4D a—1) 8?‘ %, xl ipxg—ip

5757

as required by conservation of probability, where a is a
real number constrained only by the inequality

2

(g; ) <(gi)=a=<(g;) 3D’ (2.8)

2D

resulting from the fact that g; <1 and from the Schwarz
inequality. Note that (2.8) and the conservation of proba-
bility are satisfied by putting a=a"*, as given by (2.6),
into (2.7). Equation (2.4) now reads as follows:

X2 jt)

1
¢(x1,x2,t+1)='4? E l/f(xl_

j]:jz

X[1+A(x,X5,§1,32)] » (2.9)

¢(x1,x2,0)=8,{)‘,08£2,0 s

where

1 o

2D —1 axl_jlv‘z“jz

This recursion has already been studied by the authors [4] in the context of the exact solution of the two-replica mod-
el of the directed polymer problem. We introduce the generating functions:

'/}q(xl’XZ)E z qt¢(xl:xz,t) ’

=0
- (2.10)
G,(x;, %)= 3 ¢'G(xy,x,1) .
£=0
where G is the “free-particle” Green function which satisfies
G(x,,x,t+1)= zzG —ipX—i»t),
J1 Jz
(2.11)
G(x]1x2)0)=8xb‘,08£2’0
From (2.9), we then have
¢q(xl»xz)=Gq(xlyxz)+ 4D? 2 2 (X=X )G, (X — X}, X, — X)) A(X], X3, i, 3 - (2.12)
xl,xz.ll )iy

It is now helpful to introduce the “relative position vector” y=(x;—x,)/2 (with integer components) and the “total

momentum” k. We define

%)= 3

xx,xz

Giy)= 3 e

XpXy

—ik(x;+x,)/2.p
e le—x2,2y¢q(x17x2) ’

—ik(x)+x,)/2.p
8xl—x2,2qu(x1’x2) ’

we then have
ﬁ(y)=G;(y)+(4D2a—I)Ig—zJ;(y)tlz:(O) ,

where

JHy )=5 1 [zcos(k 1)]Gk(y)— —T S exp
ij

2.13)
(2.14)
PO b I P NS o |
ik l(;q [y+ > 2.15)
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Now make one further Fourier transformation,

1/15"’5 e _ip'ytl):(y)
y

=G;'p+(4D2a—1):g—2¢§(O)J;"’ , (2.16)
where
—ip- 2D . 1 k+p . k—p .

JepP= Py Jk(y)=GLP i)— XTp, X"P. .

b ?e (¥Y)=G, [ZD—I ?cos(k i) 2D —1 |2i,cos 5 ?cos 3 ill, (2.17)
from which [using the double Fourier transform of (2.11)]

k— 2D . k 4D? Ak .

A iy [}i_‘,cos(k 1)]Gq(0)+————q(2D_l)[1 G O] ; (2.18)
furthermore, setting y=0in (2.14),

GX0)
¥5(0)=1 ! (2.19)

[q(4D%a—1)JX(0)/4D?]

Combining Egs. (2.17) and (2.19), we see that the final answer for Eq. (2.16) depends only on the Green function G;"",
which characterizes the free random walk. Up to this point we have followed [4]. We are now ready to calculate the
quantity

b ¢q(x1,Xz)X1'Xz=¥<V§—Vi)¢§”’}|k=p=o

XXy

= (@D%a— 1)Ly~ ((V = VP =m0

f

by (2.16) and simple symmetries; note that G;'p is sym- GD(q)EG;FO(O)

metric in k,p, and that J°=0 by (2.17). Further, from 1 D
(2.17) and symmetries we have = |— 27 Gk=0,pg D
2T fo a P
(V2—=V2IkP| _ D
p kMg lk=p=0 D
—| [ dp 2.21)
Y .
1——4_ (S cosp-j/2)?
=G9022—(~v}) }_‘,cos(k-i)] ap? |2 eori”?|
i k=
, ° Note that 0<a < by (2.8), and a®*=2D by (2.6).
__1 4D But the case @ =0 is trivial: then a=1/2D, which means
1—q 2D—1
since G,?’°=l/(1—q) by doubly Fourier transforming Im q
(2.10). Thus
_ 4D%a—1 k=0
x§2¢q(xl’x2)xl'x2_—2_D‘—_TT;Lq¢q (0)
MMMV
Gplq)
=1 o4 (2.20)
1—q a +(1—q)Gp(q) Re q
by (2.19), where
_2D—1 _._ (2D)"'~a
4D%a—1 a—(4D%)™!

FIG. 2. Contour in the g plane for Eq. (2.22). The original
contour is an infinitesimal counterclockwise circle about the ori-
and gin. Only the deformed contour is shown in this figure.
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that two paths always stick together and (X*)=(x?).
Hence we need only consider a> 0 in the following calcu-
lation.

We now have

(iz)r= 2 lp(xl,xZ,t)xl'XZ

LSTR.)

_9
1 dg Gplq)

__1 l1—¢q
2mi Tlgl=eq' ! a+(1—q)Gplq) ’ 222

where the contour is an infinitesimal counterclockwise
circle about the origin. We extend Gp(q) via (2.21) to the
whole complex g plane. It can be shown that this exten-

|

1 dg 1

(22),=lim—
ldl=eg" a(1—g)*?+(1—¢q)

€0 2mi

d 1
=lim—— =
€—0 217i lﬁll—ql=sq' a(1—q)?+(1—¢q)?

sion is analytic except for a branch cut on the real axis
with ¢=>1, and that the imaginary part of
limg_,,Gp(q+i8) near g=1 along the branch cut has
leading term [Q/2(2m)? ~11DP/%(g —1)P/2~! (see Ap-
pendix A).

To extract the asymptotic (ft— o) behavior of the in-
tegral in (2.22), we deform the contour as shown in Fig. 2.
It can be shown that a +1(1—q)Gp(q) has no zeros
within the entire region enclosed by our deformed con-
tour (see Appendix B). We can see from (2.21) that
Gplq) is finite for all ¢ when D =3; however, Gp(q)
diverges infraredly as ¢ —1 when D=1 or 2.

For D =1, G,(qg)=1/V'1—gq, after a contour deforma-
tion (2.22) becomes

1 _ 1

+f1+e

ialg—17"2+(g—172 —ialg—1)?+(g—1)?

=lim -1 _lpr-dqg alg—1)"
e—0 | ame'?  q? 1+e g’ aXg—113+(g—1)*
1 o 1 1 a(g—1)y”7
=L
,.,.fl 1 a(g—1P"7  ¢' a¥qg—1P+(g—1)*

e

qt

|

1

a2

Note that the above expression is a monotonic increasing function of ¢, and it is easy to show from it that (X*)|, _,=0.
The positive definiteness of (x2) is therefore explicit. To extract the large-f behavior, we change variable by setting

u2=q — 1; then the above equation becomes

=2 2 e 1 1 1 1/a* 1
— e— d _ —_— —_—
(=) =2 fo "l,ﬁ (1+u?) |u?  1+(u?/a?) ] ] a’
21y 1 +f 1/a’ _ 1
ma |u | (1+u?) 0 (1+u 2)’+1 (1+u?)[1+(u2/a®)] a?’

The first term is zero upon taking the upper and lower limits; the second term is evaluated by Gaussian approximation.

Finally we have

x2 2172 L1, 1 -3/2
() === s |~ 2t s touT
2?2 1 1 1
= -4 2 -172 -3/2
e 2 v lar s t +0(t )
172

—1+0(t77?) if a=a"* =2,

For D=2, G,(q)=(2/m)K(Vq), where K (

(2.23)

V)= f o ’2(d6/V'1—gq sin%0) is the complete elliptic integral of the first

kind. After a contour deformation, and taking the expansion of G,(q) around ¢ =1 as

16

Gz(q)—— [ln +0 [(l—q)ln

=111

we have
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2y, =L dg Galg)
2mi Yigl=eq(1—q) a+(1—¢q)G,(q)
G
=1 yim ¢ dq 2(g)
27 e—0 |V li—gl=cargl1—q): -7 g'(1—q) a+(1—¢q)G,(q)
+fw dx G,(x+i8) ,(x —1i8)
1+ex(1—x) +(1—x)G,(x +ib) a+(1—x)Gz(x-18
1 .. |2 16 | ro x 'dx G,(x +i8)
=— —In—+ —x—
Zwiel—%la " f1+e(1—x) a+(1—x)G,(x+id) TlxFid—x—id)
_1 [4In2 food_x 1 x
T a 1 ax |x—1 x-—1
J.wx—l ldx 1 x G,(x+1i8) G,(x—id) 504
1 x—1 |a 2 |a+(1—x)Gy(x+i8) a+(1—x)G,(x—id) ’ 2.29
where In(1/¢€) has been represented as III. ANALYSIS AND SUMMARY

f 1+e@x /[x(x—1)] and a term added and subtracted,
after which the limit e—0 was taken. We will show in
Appendix C that the last term of the above expression is
bounded by O(1/¢). The second term is evaluated by
writing it as

o x gy t+1 , _ 1 t 1
fl x—l (x"~1)= a k§ k
i[ Flnr+0(:7Y)] .
Thus
), = (Int+41n2+y)+0 i] . (2.25)
aTm t
For uniform averaging, a =a"* =
For D = 3, write Gp(q+i8)=Ry(q)+il,(q). The in-

tegral along the branch cut can now be written as
f alp(q)/(1—¢q) dgq
7 1rela+(1—q)Rp PH+[(1—g)p) ¢*

_1)0/2

We know from Appendix A that I,(q)~(q

therefore when D =4 the integral is bounded by O(1/ t)

however, when D =3, there is a subleading term given by

taking the asymptotic expressions of the G, and I, near
qg=1 (see Appendix A).

RS f 33/2 —1)" V2 "%dq

‘/2777' 124007372 .
2 Ta

The leading term is the integral around the branch point,
which is finite and can be read off from Eq. (2.22), and
from which the final answer reads

172

27 t=12%,

i +0(1/t) .

(x2), == |Gplg=1)—

(2.26)

We have found the beam center spread as a function of
time analytically for a directed scalar wave in a random
medium of arbitrary dimension. The coefficients of suc-
cessive powers of ¢~ !/% turned out to be quite complicat-
ed. They are (for arbitrary dimension) polynomials in
1/a, where a=[2D—1]/[4D%a—1]—1=[(2D)" '—a]/
[a—(4D?)7!']. Compared with the analysis in SKR,
where the expansion parameter is assumed to be
t "P[4a—(1/D?)], we see some discrepancies. Thus our
Eq. (2.23) does not agree with the form of Eq. (3.3) of
SKR.

Our results can be verified independentl 2' in two ex-
treme cases. In the noninteracting case, (x ) is expect-
ed to be zero. In this case, a — «, and therefore our re-
sult also gives zero. In the strong attractxon case (where
the two paths almost always stick together), (x* ), is ex-
pected to diverge at large ¢. In this case, a—>(2D)
and therefore a —0, giving a divergent value of (x? ) as
expected.
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APPENDIX A

Let g be real; consider the quantity

Ip(q)= Jim —217[GD(q+i5)-—GD(q—i8)] . @D
From equation (2.21), we have
D 2
1 27 D
=7 |— — dp; .
Ip(g)=m e fo 6|1 gcos2 ‘ H D
(A2)
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From this expression we know that I} (g), the imaginary = expand (A2) around ¢ =1. Note that for g ~1 only the

part of G,(g +id), has a nonvanishing value when ¢ >1,  regions where p; ~0 or p; ~2 contribute. We also know

and is zero when g < 1. by the symmetry p;«>27—p; that these two regions make
To extract the leading power in ¢ —1 when ¢ ~1, we  the same contribution. We therefore have

J

D—1

: S 02| JaD—(g—1) |[Tdp=—2222 (g —1y2/0- (A3)
I(@lg-1= |5 fpizoa Elp,. D=(g=1) Tldpi=7—5=rla—1) ;
where (1 is the solid angle in D spatial dimensions.
APPENDIX B

Taking the original expression of G,(g), we consider the following quantity, denoting by ¢* the complex conjugate of
q:

*
D (1—q) l—zq; Ecos%l
2w j
(1-9)Gp(@)= |5 | [Td® ; o B1)
5 ZCOS'P—l 1———q—2 Ecosp—*’-
4D° | 4 2 4D° |5 2
Taking the imaginary part, we have
. 2
D (Imq) I_Z;—z Ecos%ly y
Im{(1—¢)Gp(q)} = |- foz”dl’p R S — (B2)
2005 1—-1 ZCOSM
4D2 4D% | 4 2

which cannot vanish if Img+0. Hence a +(1—¢q)Gp(q) has no zeros off the real line. When ¢ is real and <1, both
(1—q) and Gp(q) are positive, and therefore a +(1—¢q)Gp(q) is positive. Therefore a +(1—q)G(q) never vanishes
within the region surrounded by our deformed contour.

APPENDIX C

To show that the last term of Eq. (2.24) is bounded by O(1/1), we use the fact [5] that for |g| > 1, with the convention
that —w <argqg <,

—=[6,(1/g)+iG,(1=1/q)] if Tmg >0

q

Gy(9)=1] 4
q

We now make the variable change y =1/x and define G;(¢q)=G,(1—q). We then have

G,(x+id) G,(x—id)
a+(1—x)G,(x+ib) a+(1—x)G2(x—18)
ayl/2G12(y)

—f yl“y [ay“z-H,v—l)Gz(y)]z-l-[(y—I)G’z(y)]2

The function G,(y) is continuous and finite as long as 0=y <1, and diverges as In(1 —y) when y approaches 1; the func-
tion G,(y) is finite as long as 0 <y <1, and diverges as Iny when y approaches 0. Using the above information, we note
that the quantity
1 |1 ay'?G3(y)
lay'?+(y =G, (PP +[(y —1NG3( T

t

wx '"'dx ~ldx
fl Tx—1

i

1_
a

(C1)

1—y

as a function of y is continuous over the open interval (0,1), and stays finite as y —0 and y — 1; this function therefore is
bounded in the interval 0=y < 1. The integral (C1) is therefore bounded by O(1/1).
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